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Circulating tumour DNAmethylation markers for
diagnosis andprognosis of hepatocellular carcinoma
Rui-hua Xu1*†, Wei Wei1,2†, Michal Krawczyk2†, WenqiuWang2†, Huiyan Luo1,2†, Ken Flagg2,
Shaohua Yi2, William Shi2, Qingli Quan3, Kang Li3, Lianghong Zheng4, Heng Zhang5,
Bennett A. Caughey2, Qi Zhao1, Jiayi Hou2, Runze Zhang2, Yanxin Xu3, Huimin Cai3,4, Gen Li3,4,
Rui Hou4, Zheng Zhong2, Danni Lin2, Xin Fu2, Jie Zhu2, Yaou Duan2, Meixing Yu3, Binwu Ying6,
Wengeng Zhang3, JuanWang7, Edward Zhang2, Charlotte Zhang2, Oulan Li2, Rongping Guo1,
Hannah Carter2, Jian-kang Zhu5, Xiaoke Hao7 and Kang Zhang2,3,8*

An e�ective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been
developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a
noninvasive ‘liquid biopsy’ for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker
panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and
matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal
controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P<0.001) and
was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction
model that e�ectively predicted prognosis and survival (P< 0.001). Together, these findings demonstrate in a large clinical
cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

Hepatocellular carcinoma (HCC) is a leading cause of cancer
deaths worldwide1. As with many cancers, HCC found at an
early stage carries much-improved prognosis compared to

advanced stage disease2, in part due to the relative efficacy of local
treatments compared with systemic therapy. Thus, early detection
has significant potential for reducing the mortality of HCC. Unfor-
tunately, there has been little success in developing effective blood-
based methods to screen for HCC. Alpha fetal protein (AFP) is the
only currently available blood test for detection and surveillance of
HCC; however, its clinical utility is limited by low sensitivity3.

Circulating tumour DNA (ctDNA) consists of extracellular
nucleic acid fragments shed into plasma via tumour cell necrosis,
apoptosis, and active release of DNA4. Recent research demon-
strates that ctDNA has the potential to revolutionize screening,
diagnosis, and treatment of cancer by enabling a noninvasive ‘liquid
biopsy’—that is, a blood test that enables molecular testing of solid
malignancies5,6. Compared to tissue biopsy, cell-free DNA (cfDNA)
sequencing has some obvious advantages. First, the collection of
peripheral blood to obtain cfDNA is minimally invasive compared
with tumour biopsy, regardless of site. Second, blood can be taken
at any time during therapy, allowing for real-time and dynamic
monitoring of molecular changes in tumours rather than depending
on the challenges of invasive biopsy or even imaging. Furthermore,

monitoring of cfDNA may detect tumour that is not apparent or
is indeterminate on imaging (for example, residual tumour post-
resection). Finally, ctDNA may represent the entire molecular pic-
ture of a patient’smalignancy, while a tumour biopsymay be affected
by intra-tumour heterogeneity.

DNA methylation is an epigenetic regulator of gene expression
that usually results in gene silencing7. Increased methylation of
tumour suppressor genes is an early event in many tumours, sug-
gesting that altered DNA methylation patterns could be one of
the first detectable neoplastic changes associated with tumorigen-
esis8–10. ctDNA-bearing cancer-specific methylation patterns have
been investigated as feasible biomarkers in cancers11; however, cur-
rently there are few validated methylation markers available, such
as SEPT9 in colorectal cancer12. DNA methylation profiling offers
several advantages over somatic mutation analysis for cancer detec-
tion, including higher clinical sensitivity and dynamic range, many
methylation target regions in diseases, and multiple altered CpG
siteswithin each targeted genomic region. Further, eachmethylation
marker is present in both cancer tissue and cfDNA, whereas only
a fraction of mutations present in cancer tissue may be detected
in cfDNA13.

Obtaining reliable and quantitative measurements of methyla-
tion values in a minimum amount of cfDNA remain challenging;
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more sensitive assays need to be developed. It is hypothesized that
adjacent CpG sites in the same DNA strand may be modified
by a methyltransferase or demethylase together14. These adjacent
stretches of CpG methylation, which we refer to as a methyla-
tion correlated blocks (MCBs), are similar in concept to haplotype
blocks of adjacent single nucleotide polymorphisms (SNPs) in DNA
sequence variations and have the potential to enhance the accuracy
of methylation allele calling.

In this study, to evaluate the potential of ctDNA methylation
markers in diagnosis and prognosis of HCC, we compared differen-
tialmethylation profiles ofHCC tissues and blood leukocytes in nor-
mal individuals by analysing 485,000 CpGmarkers, and identified a
methylation marker panel enriched in HCC. After validation of this
panel in matched HCC tumour DNA and plasma cfDNAwithin the
same patients, we employed multiple statistical methods to develop
diagnostic and prognostic prediction models with selected methy-
lation markers. We further compared the efficacy of methylation
marker-basedmodels and current available approaches, such asAFP
and TNM staging classification, in the diagnosis and prognosis of
HCC in 1098 HCC and 885 normal samples. These results show
that ctDNA methylation analysis may be reliable biomarkers in the
diagnosis, surveillance, and prognosis of HCC.

Patient and sample characteristics
Clinical characteristics and molecular profiling including methy-
lation data for comparison between HCC and blood lymphocytes
were assembled from sources including 377 HCC tumour samples
from The Cancer Genome Atlas (TCGA) and 754 blood leuko-
cyte samples of healthy control individuals from a data set used
in our previous methylation study on ageing (GSE40279)15. To
study ctDNA in HCC, plasma samples were obtained from Chinese
patientswithHCCand randomly selected healthy controls undergo-
ing routine health caremaintenance, resulting in a training cohort of
715 HCC patients and 560 normal healthy controls and a validation
cohort of 383 HCC patients and 275 healthy controls. All partici-
pants provided written informed consent. Clinical characteristics of
all patients and controls are listed in Supplementary Table 1.

Methylation markers for di�erentiating HCC and blood
We hypothesized that CpG markers with a maximal difference in
methylation between HCC and blood leukocytes in normal indi-
viduals would be most likely to demonstrate detectable methylation
differences in the cfDNA of HCC patients when compared to that of
normal controls. We used the ‘moderated t-statistics’ method with
Empirical Bayes for shrinking the variance16, and the Benjamini–
Hochberg procedure17 to control the false discovery rate (FDR) at
a significance level of 0.05 to identify the top 1,000 markers with
the most significantly different rates of methylation (that is, those
with the lowest p values) between HCC and blood. Unsupervised
hierarchical clustering of these top 1,000 markers was able to dis-
tinguish between HCC and blood leukocytes in normal individuals
(Supplementary Fig. 1).We designedmolecular-inversion (padlock)
probes corresponding to these 1,000 markers and tested them in 28
pairs of HCC tissue DNA and matched plasma ctDNA from the
same patient. The methylation profiles in HCC tumour DNA and
matched plasma ctDNA were consistent (Supplementary Fig. 2a,b).
401 markers with a good experimental amplification profile and
dynamic methylation range were selected for further analysis.

Methylation block structure for allele-calling accuracy
We employed the well-established concept of genetic linkage
disequilibrium (LD block) to study the degree of co-methylation
among different DNA strands18,19, with the underlying assumption
that DNA sites in close proximity are more likely to be
co-methylated than distant sites. We used paired-end Illumina
sequencing reads to identify each individual methylation block

(mBlock). We applied a Pearson correlation method to quantify
co-methylation ormBlock20.We compiled all commonmBlocks of a
region by calculating different mBlock fractions (see Methods). We
then partitioned the genome into blocks of tightly co-methylated
CpG sites we termed methylation correlated blocks (MCBs), using
an r 2 cutoff of 0.5. We then surveyed MCBs in cfDNA of 500
normal samples and found that MCBs are highly consistent. We
next determined methylation levels within an MCB in the cfDNA
from 500 HCC samples. We found a highly consistent methylation
pattern in MCBs when comparing normal versus HCC cfDNA
samples, which significantly enhanced allele-calling accuracy (Sup-
plementary Fig. 3). This technique was employed in all subsequent
sequencing analysis.

cfDNA diagnostic prediction for HCC
The methylation values of the 401 selected markers that showed
good methylation ranges in cfDNA samples were analysed by Ran-
dom Forest and Least Absolute Shrinkage and Selection Operator
(LASSO) methods to further reduce the number of markers by
modelling them in 715HCCctDNAand560normal cfDNAsamples
(Fig. 1, see Methods). We obtained 24 markers using the Random-
Forest analysis.We also obtained 30markers using a LASSO analysis
in which we required selected markers to appear over 450 times out
of a total of 500 repetitions. There were ten overlapping markers
between these two methods (Table 1). Using a logistic regression
method, we constructed a diagnostic prediction model with these
ten markers. Applying the model yielded a sensitivity of 85.7% and
specificity of 94.3% for HCC in the training data set of 715 HCC
and 560 normal samples (Fig. 2a) and a sensitivity of 83.3% and
specificity of 90.5% in the validation data set of 383 HCC and
275 normal samples (Fig. 2b). We also demonstrated this model
could differentiate HCC from normal controls both in the training
data set (AUC=0.966) and the validation data set (AUC= 0.944)
(Fig. 2c,d). Unsupervised hierarchical clustering of these ten mark-
ers was able to distinguish HCC from normal controls with high
specificity and sensitivity (Fig. 2e,f and Supplementary Fig. 4).

We next assessed a combined diagnostic score (cd-score) of
the model for differentiating between liver diseases (hepatitis B
virus/hepatitis C virus (HBV/HCV) infection, and fatty liver) and
HCC, since these liver diseases are known major risk factors for
HCC. We found that the cd-score could differentiate HCC patients
from those with liver diseases or healthy controls (Fig. 3a). These
results were consistent and comparable with those predicted by AFP
levels (Supplementary Fig. 5a).

Methylation markers predicted clinical outcomes
We next studied the utility of the cd-score in assessing treatment
response, the presence of residual tumour following treatment, and
staging of HCC. Clinical and demographic characteristics, such
as age, gender, race, and American Joint Committee on Cancer
(AJCC) stagewere included in the analysis. The cd-scores of patients
with detectable residual tumour following treatment (n=828) were
significantly higher than those with no detectable tumour (n=270),
and both were significantly greater than normal controls (n=835)
(p< 0.0001, Fig. 3b). Similarly, cd-scores were significantly higher
in patients before treatment (n=109) or with progression (n=381)
compared to those with treatment response (n= 248) (p< 0.0001,
Fig. 3c). In addition, cd-scores were significantly lower in patients
with complete tumour resection after surgery (n= 170) compared
with those before surgery (n=109), yet were higher in patients with
recurrence (n= 155) (p< 0.0001, Fig. 3d). Furthermore, there is
good correlation between the cd-scores and tumour stage. Patients
with early stage disease (I, II) had substantially lower cd-scores
compared to those with advanced stage disease (III, IV) (p< 0.05,
Fig. 3e). Collectively, these results suggest that the cd-score (that is,
the amount of ctDNA in plasma) correlateswell with tumour burden
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Figure 1 | Workflow chart of data generation and analysis. Whole genome methylation data on HCC and normal lymphocytes were used to identify
401 candidate markers. Left panel: diagnostic marker selection: LASSO and random-forest analyses were applied to a training cohort of 715 HCC and
560 normal patients to identify a final selection of ten markers. These ten markers were applied to a validation cohort of 383 HCC and 275 normal patients.
Right panel: prognostic marker selection: Univariant-Cox and LASSO-Cox were applied to a training cohort of 680 HCC patients with survival data to
identify a final selection of eight markers. These eight markers were applied to a validation cohort of 369 HCC with survival data.

andmay have utility in predicting tumour response and surveillance
for recurrence.

Utility of ctDNA diagnostic prediction and AFP
Currently, the only blood biomarker for risk assessment and surveil-
lance of HCC is serum AFP levels. However, its low sensitiv-
ity makes it inadequate to detect all patients that will develop
HCC and severely limits its clinical utility. In fact, many cirrhotic
patients develop HCC without any increase in AFP levels. Strik-
ingly, 40% patients of our HCC study cohort have a normal serum
AFP (<25 ngml−1).

In biopsy-proven HCC patients, the cd-score demonstrated
superior sensitivity and specificity than AFP for HCC diagnosis

(AUC 0.969 versus 0.816, Fig. 3f). In patients with treatment
response, tumour recurrence, or progression, cd-score showedmore
significant changes compared to testing at initial diagnosis thanAFP
(Supplementary Fig. 5b,c). In patients with serial samples, those
with a positive treatment response had a concomitant significant
decrease in cd-score compared to that prior to treatment, and
there was an even further decrease in patients after surgery. By
contrast, our patients with progressive or recurrent disease all had
an increase in cd-score (Supplementary Fig. 6). By comparison,
AFP was less sensitive for assessing treatment efficacy in individual
patients (Supplementary Fig. 7). In addition, while cd-score corre-
lated well with tumour stage (Supplementary Fig. 5d), particularly
among patients with stage I, II and III, there was no significant
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Table 1 |Characteristics of ten methylation markers and their coe�cients in HCC diagnosis.

Markers Ref Gene Coe�cients SE z value p value

15.595 2.395 6.513 <0.001
cg10428836 BMPR1A 11.543 0.885 −13.040 <0.001
cg26668608 PSD 4.557 0.889 5.129 <0.001
cg25754195 ARHGAP25 2.519 0.722 3.487 <0.001
cg05205842 KLF3 −3.612 0.954 −3.785 <0.001
cg11606215 PLAC8 6.865 1.095 6.271 <0.001
cg24067911 ATXN1 −5.439 0.868 −6.265 <0.001
cg18196829 Chr 6:170 −9.078 1.355 −6.698 <0.001
cg23211949 Chr 6:3 −5.209 1.081 −4.819 <0.001
cg17213048 ATAD2 6.660 1.422 4.683 <0.001
cg25459300 Chr 8:20 1.994 1.029 1.938 0.053
SE: standard errors of coe�cients; z value: Wald z-statistic value.
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Figure 2 | cfDNAmethylation analysis of HCC diagnosis. a,b, Confusion tables of binary results of the diagnostic prediction model in the training (a) and
validation data sets (b). c,d, ROC of the diagnostic prediction model with methylation markers in the training (c) and validation data sets (d).
e,f, Unsupervised hierarchical clustering of ten methylation markers selected for use in the diagnostic prediction model in the training (e) and validation
data sets (f).

difference in AFP values in patients with different stages, except
between patientswith stage III and IV (Supplementary Fig. 5e), indi-
cating an advantage of cd-score over AFP in differentiation of early
stage HCC.

ctDNA prognostic prediction for HCC
We then investigated the potential of using methylation markers in
ctDNA for prediction of prognosis in HCC in combination with
clinical and demographic characteristics including age, gender, race,
and AJCC stage. We randomly split the 1049 HCC patients with
complete survival information into training and validation data sets
with an allocation of 2:1.We implemented UniCox and LASSO-Cox
methods to reduce the dimensionality and constructed aCox-model

to predict prognosis with an 8-marker panel (Table 2). We gen-
erated Kaplan–Meier curves in training and validation data sets
using a combined prognosis score (cp-score) with these markers.
The high-risk group (cp-score >−0.24) had 341 observations with
53 events in the training data set and 197 observations with 26
events in the validation data set; and the low-risk group (cp-score
≤−0.24) has 339 observations with 7 events in the training data
set and 172 observations with 9 events in the validation data set.
Median survival was significantly different in both the training
set (p < 0.0001) and the validation set (p= 0.0014) by log-rank
test (Fig. 4a,b).

Multivariate variable analysis showed that the cp-score was
significantly correlated with risk of death both in the training
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Figure 3 | cfDNAmethylation analysis and tumour burden, treatment response, and staging. a, The combined diagnosis score (cd-score) in healthy
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without detectable tumour burden. c, cd-score in normal controls, HCC patients before treatment, with treatment response, and with progression.
d, cd-score in normal controls and HCC patients before surgery, after surgery, and with recurrence. e, cd-score in normal controls and HCC patients from
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Table 2 |Characteristics of eight methylation markers and their coe�cients in HCC prognosis prediction.

Markers Ref Gene Coe�cients HR CI SE z value p value

cg23461741 SH3PXD2A −1.264 0.282 0.024–3.340 1.2604 −1.003 0.316
cg06482904 C11orf9 −0.247 0.781 0.067–9.100 1.2530 −0.197 0.844
cg25574765 PPFIA1 1.026 2.790 0.488–15.900 0.8894 1.153 0.249
cg07459019 Chr 17:78 −8.156 0.000 0.000–0.012 1.9112 −4.267 <0.001
cg20490031 SERPINB5 6.082 438.000 13.200–14,600.000 1.7885 3.400 0.001
cg01643250 NOTCH3 −5.368 0.005 0.000–0.140 1.7357 −3.093 0.002
cg11397370 GRHL2 1.497 4.470 1.030–19.400 0.7506 1.994 0.046
cg11825899 TMEM8B 2.094 8.120 0.957–68.900 1.0909 1.920 0.055
HR: Hazard Ratio; CI: 95.0% confidence interval; SE: standard errors of coe�cients; z value: Wald z-statistic value.

and validation data set and that the cp-score was an inde-
pendent risk factor of survival (hazard ratio [HR]: 2.512; 95%
confidence interval [CI]: 1.966–3.210; p < 0.001 in the training
set; HR: 1.553, CI: 1.240–1.944; p < 0.001 in the validation
set, Supplementary Table 2). Interestingly, AFP was no longer
significant as a risk factor when cp-score and other clinical char-
acteristics were taken into account (Supplementary Table 2).

As expected, TNM stage predicted the prognosis of patients in
our training and validation data set (Supplementary Fig. 8a,b).How-
ever, the combination of cp-score and TNM staging significantly
improved our ability to predict prognosis in both the training (AUC
0.7935, Fig. 4c) and validation data sets (AUC 0.7586, Fig. 4d).
Kaplan–Meier curves also showed that patients separated by
both cp-score and staging have significantly different prognosis
(p<0.0001, Fig. 4e). These results demonstrate that ctDNA methy-
lation analysis may contribute to risk stratification and prediction
of prognosis in patients with HCC. However, this applicationmerits
further investigation in an HCC population with longer clinical
follow-up than we had access to for our study.

The finding that tumours shed nucleic acids (DNA and RNA)
into the blood and can be used as a surrogate source of tumourDNA

has opened an exciting new avenue in cancer diagnosis and prog-
nosis21,22. Despite substantial variability in the somatic mutations
of individual tumours (with some notable exceptions), methylation
patterns turn out to be remarkably consistent. Methylation patterns
detected in cfDNA therefore have the potential to be more reliable
discriminatory tools for the detection and diagnosis of malignancy.

In this study, we first determined differentially methylated CpG
sites between HCC tumour samples and blood leukocytes in nor-
mal individuals for an HCC-specific panel. We then constructed a
diagnostic prediction model using a 10-methylation marker panel
(cd-score) for use in cfDNA; the cd-score effectively discriminated
patients with HCC from individuals with HBV/HCV infection, cir-
rhosis, and fatty liver as well as healthy controls. Given that patients
with these liver diseases are the target screening population under
current guidelines, it is essential that a serum test reliably distin-
guish these disease states from HCC. In our study, the sensitivity
of the cd-score for HCC is comparable to liver ultrasound23, the
current standard for HCC screening, markedly superior to AFP,
and may represent a more cost-effective and less resource-intensive
approach. Prospective clinical evaluation is warranted to compare
or potentially combine ultrasound screeningwith cd-score. Further-
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Figure 4 | cfDNAmethylation analysis for prognostic prediction HCC survival. a,b, Overall survival curves of HCC patients with low or high risk, according
to the combined prognosis score (cp-score) in the training (a) and validation data sets (b). c,d, The ROC for the cp-score, stage, and cp-score combined
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more, the cd-score of our model showed high correlation with HCC
tumour burden, treatment response, and stage, and is superior to
the performance of AFP in our cohort. The cd-score may therefore
be particularly useful for assessment of treatment response and
surveillance for recurrence.

Additionally, we constructed a prognostic prediction model with
an independent 8-marker panel and generated a combined prog-
nosis score system (cp-score). The cp-score, which effectively dis-
tinguished HCC patients with significantly different prognosis, was
validated as an independent prognostic risk factor in amultivariable
analysis in our cohort and was again superior to AFP. This type of
analysis may assist in the identification of patients for whom more
or less aggressive treatment and surveillance is warranted. However,
our study was limited by a relatively short clinical follow-up period.

Further study is warranted with longer clinical surveillance, in par-
ticular to fully assess whether this score canmeaningfully contribute
to clinical decision making for patients.

By sequencing of bisulfite converted cfDNA, we identified many
previously unknown CpGmarkers differentially methylated in can-
cer versus normal plasma. Specifically, we employed a direct se-
quencing approach that captured the methylation status of adjacent
CpG markers and found that the methylation of many adjacent
markers is highly correlated with the initially targeted CpG, forming
anMCB. A similar concept has been proposed before in whichmul-
tiple adjacent CpG sites share a similar methylation pattern14,24–27.
This information allowed us to identify additional markers and
improve the accuracy of sequencing for determining significant
methylation differences.
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Oncologists currently evaluate treatment response of HCC by

imaging and AFP. Even with the modified Response Evaluation
Criteria in Solid Tumours (mRECIST)28, there are often difficult
cases in which data is inconsistent and determining response and
prognosis of patients is challenging. AFP is a useful serum marker
in many patients, but is limited by its poor sensitivity and has
proven to be a less than ideal surrogate for monitoring treatment
response of HCC29, as demonstrated by others and consistent with
our study. In contrast, our results showed that methylation markers
of ctDNA have high sensitivity and specificity that correlate with
tumour burden, stage, treatment response, and prognosis of HCC
patients. Furthermore, it is possible for relatively rapid adjustment
of the treatment plan based on cfDNA due to its relatively short
half-life (about 2 h)30.

Some recent studies have reported that monitoring the somatic
alterations in ctDNA can provide the earliest measure of treatment
response in some solid cancers, including lung, colorectal and breast
cancer31–34. Unlike these studies, an advantage of our methylation
markers is that we do not first need identification of somatic mu-
tations in an individual patient. Furthermore, based on targeted
sequencing of specific markers, our method can avoid the high
cost of deep sequencing, which may make for its more routine and
cost-effective application. Alternatively, it is intriguing to imagine
the identification of a broad ‘pan-cancer’ methylation panel for
use in cfDNA, possibly in synergy with somatic mutation analysis,
that would allow pan screening for malignancy. Collectively, our
study demonstrates the utility of cfDNA methylation analysis in
the diagnosis, treatment evaluation, and prognosis of HCC, and
represents a proof of concept for its use in solidmalignancies broadly
beyond HCC.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Patient data. Tissue DNA methylation data was obtained from The Cancer
Genome Atlas (TCGA). Complete clinical, molecular, and histopathological data
sets are available at the TCGA website: https://tcga-data.nci.nih.gov/docs/
publications/tcga. Individual institutions that contributed samples coordinated the
consent process and obtained informed written consent from each patient in
accordance to their respective institutional review boards.

A second independent Chinese cohort consisted of HCC patients at the Sun
Yat-sen University Cancer Center in Guangzhou, Xijing Hospital in Xi’an and the
West China Hospital in Chengdu, China. Those who presented with HCC from
stage I–IV were selected and enrolled in this study. Patient characteristics and
tumour features are summarized in Supplementary Table 1. The TNM staging
classification for HCC is according to the 7th edition of the AJCC cancer staging
manual35. The TNM Staging System is one of the most commonly used tumour
staging systems. This system was developed and is maintained by the American
Joint Committee on Cancer (AJCC) and adopted by the Union for International
Cancer Control (UICC). The TNM classification system was developed as a tool for
oncologists to stage different types of cancer based on certain standard criteria. The
TNM Staging System is based on the extent of the tumour (T), the extent of spread
to the lymph nodes (N), and the presence of metastasis (M). This project was
approved by the Institutional Review Boards (IRBs) of Sun Yat-sen University
Cancer Center, Xijing Hospital, and West China Hospital. Informed consent was
obtained from all patients. Tumour and normal tissues were obtained as clinically
indicated for patient care and were retained for this study. Human blood samples
were collected by venipuncture and plasma samples were obtained by taking
supernatant after centrifugation and stored at−80 ◦C before cfDNA extraction.

Cell-free DNA extraction from plasma samples.We used minimal 1.5ml plasma
samples throughout our study by investigating the minimal volume of plasma that
will give a consistent cfDNA recovery and reliable sequencing coverage defined as
more than 20 reads for a target cg marker. EliteHealth cfDNA extraction Kit
(EliteHealth, Guangzhou Youze, China) was used for cell-free DNA extraction.
More detailed information is described in the Supplementary Information.

Bisulfite conversion of genomic DNA. 10–15 ng of cf DNA was converted to
bis-DNA using EZ DNAMethylation-Lightning Kit (Zymo Research) according to
the manufacturer’s protocol. The efficiency of bisulfite conversion was >99.8%, as
verified by deep sequencing of bis-DNA and analysing the ratio of C to T
conversion of CH (non-CG target-captured) dinucleotides.

Determination of DNAmethylation levels by deep sequencing of bis-DNA
target-captured with molecular-inversion (padlock) probes. CpG markers whose
methylation levels significantly differed in any of the comparisons between any
cancer tissue and any normal tissue in TGCA data set were used to design padlock
probes for capture and sequencing of cfDNA. Padlock capture of bis-DNA was
based on the technique on published methods with modifications36–38. We used a
two-step approach wherein the first step is to identify optimal cg markers with the
largest methylation beta value difference between HCC tissue and normal blood
leukocytes; the second step to validate these top cg markers using cfDNA from
plasma sample of HCC and normal patients. Because of a relatively modest total
size of captured regions/cg markers, this approach offers much lower cost of
sequencing than any current methods, including whole methylome-wide
sequencing, therefore enabling us to evaluate a large number of samples.
Furthermore, our direct targeted sequencing approach offers digital readout, and
requires much less starting cfDNA material (10–15 ng) than more traditional
recent methods based on hybridization on a chip (for example, Infinium, Illumina)
or target-enrichment by hybridization (for example, SureSelect, Agilent). This
approach is also less sensitive to unequal amplification as it utilizes unique
molecular identifiers (UMIs).

Probe design and synthesis. Padlock probes were designed using the ppDesigner
software37. The average length of the captured region was 100 bp, with the CpG
marker located in the central portion of the captured region. Linker sequence
between arms contained binding sequences for amplification primers separated by
a variable stretch of Cs to produced probes of equal length. We incorporated a 6-bp
UMI sequence in probe design to allow for the identification of unique individual
molecular capture events and accurate scoring of DNA methylation levels. Padlock
probe sequence information on the final ten diagnostic markers and eight
prognostic markers are listed in Supplementary Table 4.

Probes were synthesized as separate oligonucleotides using standard
commercial synthesis methods (ITD). For capture experiments, probes were
mixed, in vitro phosphorylated with T4 PNK (NEB) according to manufacturer’s
recommendations, and purified using P-30 Micro Bio-Spin columns (Bio-Rad).

Sequencing data analysis.Mapping of sequencing reads was done using the
software tool bisReadMapper with some modifications37. First, UMIs were
extracted from each sequencing read and appended to read headers within FASTQ
files using a custom script. Reads were on-the-fly converted as if all C were
non-methylated and mapped to in-silico converted DNA strands of the human
genome, also as if all C were non-methylated, using Bowtie2 (ref. 39). Original
reads were merged and filtered for a single UMI—that is, reads carrying the same
UMI were discarded, leaving a single, unique read. Methylation frequencies were
calculated for all CpG dinucleotides contained within the regions captured by
padlock probes by dividing the numbers of unique reads carrying a C at
the interrogated position by the total number of reads covering the
interrogated position.

Identification of methylation correlated blocks (MCBs). Pearson correlation
coefficients between methylation frequencies of each pair of CpG markers
separated by no more than 200 bp were calculated separately across 50 cfDNA
samples from each of the two diagnostic categories—that is, normal health blood
and HCC. A value of Pearson’s r <0.5 was used to identify transition spots
(boundaries) between any two adjacent markers indicating uncorrelated
methylation. Markers not separated by a boundary were combined into MCBs.
This procedure identified a total of∼1,550 MCBs in each diagnostic category
within our padlock data, combining between 2 and 22 CpG positions in each block.
Methylation frequencies for entire MCBs were calculated by summing up the
numbers of Cs at all interrogated CpG positions within an MCB and dividing by
the total number of C+Ts at those positions.

Data availability. Raw beta value data for ten diagnostic markers are listed in
Supplementary Table 5 (Pages 15–81); raw beta value data for eight prognostic
markers are listed in Supplementary Table 6 (Pages 82–118). Key raw data were also
verified and uploaded onto the Research Data Deposit public platform
(www.researchdata.org.cn) with an approval number RDDB2017000132.
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